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Abstract
The method of the determination of the principal axes system (PAS) orientation
with respect to the initial reference frame for any quadrupolar component of the
crystal-field Hamiltonian H(II)

CF is presented. The developed method is based on
the extreme points of the axial crystal-field parameter map, B20(α, β), where
both the partial derivatives ∂B20/∂α and ∂B20/∂β simultaneously vanish, and
α, β stand for the two Euler angles with respect to the initial reference frame.
In general, there are three such points corresponding to a maximum, minimum
and saddle point on the map. These particular points fix the orthogonal PAS
in which three equivalent, two-parameter (B20, B22), orthorhombic-like H(II)

CF
parameterizations coexist according to the three options of the z-axis. Hence,
the standardization of HCF parameterizations becomes simplified and lies in
the particular choice between the three forms, conventionally that with the
maximal |B20|.

PACS number: 71.70.Ch

1. Introduction

The quadrupolar term H(II)
CF is the first out of the effective components of the crystal-(ligand)-

field Hamiltonians and its parameterization determines the global HCF parameterization. The
complete analysis of all equivalent H(II)

CF parameterizations, i.e. those referring to various
reference frames, for all point symmetries of the central ion is presented below. Throughout
the paper the tensor (Wybourne [1, 2]) notation for the crystal-field Hamiltonian is consistently
used. In this instanceH(II)

CF = ∑2
q=−2 B2qC

(2)
q , where unprimed crystal-field parameters (CFPs)

B2q refer to the initial reference frame (crystallographical or nominal one [3] depending
whether the initial set of CFPs is theoretical or experimentally fitted). The primed CFPs
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correspond to the transformed systems, and C(2)
q are the components of the spherical tensor

operator of rank 2.
The second-order crystal-field termH(II)

CF , as any second-order tensor is, in general, defined
by its five components. However, according to the central-ion point symmetry reflected
usually in the reference frame choice, i.e. in the so-called symmetry-adapted system, in order
to parameterize the H(II)

CF one needs nominally from zero to five CFPs [4–6]. Specifically, in
the case of the cubic symmetry the quadrupolar term is completely compensated and does
not occur at all regardless of the choice of the reference frame. In turn, only one axial
parameter, B20, is needed to parameterize H(II)

CF (in its symmetry-adapted system) in the case
of the axial (C∞v), hexagonal, tetragonal and trigonal symmetries. On the other hand, for
the orthorhombic symmetry two real parameters B20 and B22 are necessary, while for the
monoclinic symmetry already three: either one real B20 with the pair of complex-conjugate
CFPs B22, B2−2 or three real B20, B21, B22 (or one real B20 and two imaginary ones B2−1, B2−2)
[7, 8]. Finally, in the case of the triclinic symmetry all five CFPs are required: one axial and
two pairs of complex-conjugate B2±1, B2±2.

When in a given H(II)
CF parameterization a pair (or two pairs) of complex-conjugate CFPs

is inherent, in our discussed case either B2±1 and/or B2±2, one can always reduce the number
of the CFPs by one appropriately rotating the initial reference frame about its z-axis [9, 10].
In this way, any monoclinic H(II)

CF can always be reduced to the form characteristic for the
orthorhombic H(II)

CF . But, interestingly, this is only a prelude to the main property of the
quadrupolar term—the general possibility of the so-called diagonalization of H(II)

CF [3, 11, 12].
However, having just a formal regard for the crystallographical point symmetry of the

central ion does not confine further possible reduction in the number of the CFPs needed
for the quadrupolar potential parameterization. An infinite number of arbitrary rotations of
the reference frame, naturally followed by the loss of potential advantages of the symmetry-
adapted system, lead to an infinite number of equivalent H(II)

CF parameterizations. Nevertheless,
there exists among them a certain particular form. The quadrupolar term H(II)

CF for mono- or
triclinic central-ion point symmetry can always be reduced to the form in which at most two
real CFPs, B ′

20 and B ′
22, are essential. It may be achieved by way of the diagonalization of

H(II)
CF [3, 11, 12], i.e. rotating the initial reference system to the principal axes system (PAS) by

a unique set of Euler angles (α, β, γ ) [13–15]. And so, the first angle α refers to the rotation
about the original z-axis, the second β about the new (transformed) y-axis and the third γ , in
the case of need, about the final direction of the z-axis.

This paper presents a direct calculational method of finding the PAS with respect
to the initial reference frame for any original low-symmetry H(II)

CF parameterization being
characterized by x1 = |B21|

B20
, x2 = |B22|

B20
and the phases ϕ1 and ϕ2 of its complex-conjugate

CFPs, respectively. The three axes of the PAS correspond to such three directions of the z-axis
of the system obtained through rotation of the initial system by (α, β, 0) Euler angles, for
which both ∂B ′

20/∂α and ∂B ′
20/∂β simultaneously become zero, i.e. to a maximum, minimum

and saddle point on the B ′
20(α, β) map [14, 15]. The exact calculational method how to get

the direction cosines of the principal axes is developed in section 2. Further, some chosen
instructive limiting cases (x1 and/or x2 equal to zero), which require separate investigations
due to their indeterminacy, are discussed in subsection 2.1. The introduced formalism is
illustrated by an example of the H(II)

CF term for the U4+ ion of the C1 point symmetry in UF4

[15, 16]. Section 3, in turn, covers the relationships between the three distinguished pairs of the
CFPs B

(i)
20 , B

(i)
22 , i = 1, 2, 3, corresponding to the three choices of the z-axis within the PAS, as

well as the connections between the x
(i)
2 ratios within their triads. It should be emphasized that

the method presented in this paper is innately related to the method of standardization of the
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equivalent HCF parameterizations which is based on the transformation of their quadrupolar
component and has been introduced by Rudowicz 20 years ago [3, 7, 8]. In order to clearly
approach the concept of the PAS and to throw a new light on the standardization idea of
HCF parameterizations some model orthorhombic coordinations generating quadrupolar H(II)

CF
terms of various x2 ratios are considered in section 4. The conclusions comprised in section 5
are completed with the open but inevitable question: is there any correlation between the local
coordination geometry of the central ion and the relevant PAS?

2. Transformation of the initial reference frame of H(II)
CF into its principal axes system

Under the notion of the initial reference frame we understand either a crystallographical
or nominal [3] reference system, depending whether we deal with any theoretical or
fitted initial set of CFPs to be transformed. Let us consider a general case of H(II)

CF
parameterization expressed by a set of five CFPs Bkq(k = 2, q = 0,±1,±2), typical for
the complete parameterization (C-approach [7]) of the triclinic H(II)

CF . The higher symmetry
H(II)

CF parameterizations become particular cases of this general one. Then,

H(II)
CF = B20C

(2)
0 + B21C

(2)
1 + B2−1C

(2)
−1 + B22C

(2)
2 + B2−2C

(2)
−2,

where C(2)
q ≡ ∑

i

C(2)
q (θi, φi), and θi, φi stand for the polar angular coordinates of the open-

shell electrons (i).
Due to the rotation of the initial reference frame by two Euler angles (α, β, 0), the axial

CFP B20 takes the following form [13, 15, 17]:

B ′
20 = C

(2)
0 (α, β)B20 + C

(2)
1 (α, β)B21 + C

(2)
−1(α, β)B2−1 + C

(2)
2 (α, β)B22 + C

(2)
−2(α, β)B2−2

= C
(2)
0 (β)B20 + 2C

(2)
1 (β)|B21| cos(α + ϕ1) + 2C

(2)
2 (β)|B22| cos 2(α + ϕ2),

where B21 = |B21| eiϕ1 , B2−1 = −|B21| e−iϕ1 , B22 = |B22| e2iϕ2 , B2−2 = |B22| e−2iϕ2

are the initial CFPs, whereas C
(2)
0 (β) = 1

2 (3 cos2 β − 1), C
(2)
1 (β) =

√
6

2 sin β cos β,

C
(2)
2 (β) =

√
6

4 sin2 β [13, 17]. Thus,

B ′
20 =

[
1
2 (3 cos2 β − 1) +

√
6x1 sin β cos β cos(α + ϕ1) +

√
6

2 x2 sin2 β cos 2(α + ϕ2)
]
B20,

(1)

where x1 = |B21|
B20

and x2 = |B22|
B20

. Similarly, using the remaining rows of the D(2) matrix
[13, 17] one gets

B ′
21 =

{
(−

√
6/4) sin 2β + x1 cos 2β cos(α + ϕ1) + 1

2x2 sin 2β cos 2(α + ϕ2)

+ i[x1 cos β sin(α + ϕ1) + x2 sin β sin 2(α + ϕ2)]
}
B20 (2)

and

B ′
22 =

{
(
√

6/4) sin2 β − 1
2x1 sin 2β cos(α + ϕ1) + x2

(
1 − 1

2 sin2 β
)

cos 2(α + ϕ2)

+ i[−x1 sin β sin(α + ϕ1) + x2 cos β sin 2(α + ϕ2)]
}
B20. (3)

Naturally, the modulus M2 = [ ∑
q |B ′

2q |2
]1/2

is invariant under arbitrary rotation of the
reference frame.
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The distinguished points on the B ′
20(α, β) map are those for which both the first partial

derivatives simultaneously vanish

∂B ′
20

∂α
= −

√
6 sin β[x1 cos β sin(α + ϕ1) + x2 sin β sin 2(α + ϕ2)]B20 (4)

and

∂B ′
20

∂β
=

√
6

[
−

√
6

4
sin 2β + x1 cos 2β cos(α + ϕ1) +

1

2
x2 sin 2β cos 2(α + ϕ2)

]
B20. (5)

According to the report by Burdick and Reid in [14], which is valid not only for k = 2, the
vanishing of the derivatives (equations (4) and (5)) leads to the disappearance of the B2±1

CFPs (equation (2)), however with one reservation. Substituting equations (4) and (5) into
equation (2), we have

B ′
21 = 1√

6

∂B ′
20

∂β
− i√

6 sin β

∂B ′
20

∂α
. (6)

Consequently, when β = 0 or π , i.e. when the initial z-axis direction is conserved, the
second term in equation (6) becomes indeterminate of the 0/0 type. But then, as results from
equation (4), ∂B ′

20
∂α

≡ 0, while ∂B ′
20

∂β
= 0 if cos(α + ϕ1) = 0, regardless of the x1 value

(x1 �= 0) (equation (5)). And so we have on the B ′
20(α, β) map a distinguished saddle point(

α = π
2 − ϕ1, β = 0

)
which corresponds to the initial z-axis direction established by the

choice of the initial reference frame. Generally, this specific point does not enter the triad of
the true distinguished points fixing the PAS (see section 3). The B ′

2±1 CFPs do not vanish
at this apparent saddle point, but according to the rotation by α angle (equation (2)) one has
B ′

2±1 = ±i|B21|. In the case of a real B21 CFP (ϕ1 = 0), this apparent distinguished point
always has the coordinates

(
π
2 , 0

)
. If x1 = 0 then the point (0, 0), representing all the α-axis

points, plays a role of the true distinguished point—the z-axis is now one out of the three
principal axes.

Let us consider the true distinguished points in the general case, i.e. for β �= 0. Then,

−
√

6 sin β[x1 cos β sin(α + ϕ1) + x2 sin β sin 2(α + ϕ2)] = 0 (7)

−3 sin β cos β +
√

6x1(cos2 β − sin2 β) cos(α + ϕ1) +
√

6x2 sin β cos β cos 2(α + ϕ2) = 0.

(8)

From equation (7) results

tan β = − x1 sin(α + ϕ1)

x2 sin 2(α + ϕ2)
,

and hence

β = arctan

[
− x1 sin(α + ϕ1)

x2 sin 2(α + ϕ2)

]
± π. (9)

In turn, from equation (8) one gets

tan 2β = − −2x1 cos(α + ϕ1)

x2 cos 2(α + ϕ2) −
√

6
2

,

and hence

β = 1

2
arctan

[
−2x1 cos(α + ϕ1)

x2 cos 2(α + ϕ2) −
√

6
2

]
± π

2
. (10)
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For the specified initial parameters, x1, x2, ϕ1, ϕ2, the true distinguished points on the B ′
20(α, β)

map corresponding to its maximum, minimum and saddle point are the intersection points of
both the β(α) functions (equations (9) and (10)). These points fix the directions of the three
axes of certain particular reference system called the principal axes system (PAS) [3, 11, 12].
There are always three such solutions which refer to the three axes of the PAS except for the
purely axial H(II)

CF , x1 = 0 and x2 = 0, for which an infinite number of such solutions exist
instead of two distinguished ones (there is a line of such distinguished points), but no saddle
point occurs (subsection 2.1).

The orthogonality of the axes found in the above way can be confirmed directly using
the expression for the angle between the vectors and knowing their angles α(i), β(i) for
i = 1, 2, 3 [15]. This orthogonality can also be proved generally. Let us choose one out
of the distinguished directions, e.g. that with i = 1 as a starting point. The relevant x- and
y-axes orientation can be taken so as to make the B

(1)
22 CFP real, i.e. to put ϕ2 = 0 without

any loss of generality. So, the pair of real CFPs B
(1)
20 and B

(1)
22 are given as the input data.

Let us now define the rotational transformations leading to some other reference systems in
which the B ′

2±1 CFPs vanish as well. From equation (2) results that the real part of these
CFPs disappears for sin 2β = 0 (x1 = 0 is assumed) and their imaginary part for sin 2β = 0
or sin 2α = 0, respectively. Consequently, these are the reference systems after the following
rotations of the initial system:
(1) α = 0 (as an arbitrary choice), β = 0— for the chosen direction (i = 1),

(2) α = 0, β = π

2
— for the second distinguished direction (i = 2),

(3) α = π

2
, β = π

2
— for the third distinguished direction (i = 3).

(11)

In fact, as implies from equations (4) and (5) both the derivatives ∂B ′
20/∂α and ∂B ′

20/∂β are
equal to zero after the above three rotations, and thus the specified directions are orthogonal
(expressions (11)). Moreover, the B

(2)
22 and B

(3)
22 CFPs remain real (equation (3)). These

directions are the principal axes.
As an example, the second-order H(II)

CF term for U4+ ion of the C1 site symmetry in
UF4 [15, 16] is considered below in details. The complete set of the five theoretical
second-order CFPs (given in the last column of table IV in [16]) was estimated as
(in cm−1): B20 = 526, |B21| = 298, ϕ1 = −32.5◦, |B22| = 948, ϕ2 = −69.0◦. So,
x1 = 0.567, x2 = 1.802 and M2 = 1501. Employing equations (9) and (10) the corresponding
diagram can be plotted (figure 1). The triad of points 1, 2, 3 refers to the PAS for the considered
H(II)

CF . Due to the independence of the axial B20 CFP on the z-axis sense, the (α, β) points are
duplicated as (α + π, π − β) points seen as 1′, 2′, 3′ triad in figure 1.

2.1. The particular limiting cases of H(II)
CF parameterizations

For certain values of the parameters x1, x2, ϕ1 and ϕ2, the right-hand sides of equations (9)
and (10) can take the indeterminate forms which need an individual examination. It is
instructive to focus on the following particular cases:

(1) x1 = |B21|
B20

= 0, (2) x2 = |B22|
B20

= 0, (3) x1 = x2 = 0.

In the first case,
∂B ′

20

∂α
= −

√
6x2 sin2 β sin 2(α + ϕ2)B20

∂B ′
20

∂β
= sin β cos β[−3 +

√
6x2 cos 2(α + ϕ2)]B20.
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Figure 1. The diagram of the distinguished points (directions) on the B ′
20(α, β) map of H(II)

CF
for U4+ ion of the C1 point symmetry in UF4 [15, 16]. The points of the solid lines satisfy
equation (9) and those of the dashed lines equation (10). The intersection points correspond to
the distinguished directions: (1) maximum (1064 cm−1) (α = 66.2◦, β = 60.6◦); (2) minimum
(−1448 cm−1) (α = 159.8◦, β = 83.6◦); (3) saddle point (384 cm−1) (α = 80.8◦, β = 149.7◦).

2

π

2

π
π

α

2ϕ

2ϕ

β

π

1

0

2

3

Figure 2. The position of the three principal axes 1, 2, 3 on the B ′
20(α, β) map of H(II)

CF with
x1 = 0 (ϕ2 < 0 option) with respect to the initial reference frame. This triad is marked by the
triangle of circles. The solid points denote the standard axes positions, i.e. when ϕ2 = 0 in the
initial reference frame.

The initial parameterization form proves that its reference system z-axis belongs to the principal
axes. The distinguished points on the B ′

20(α, β) map within the ranges 0 � α < π and
0 � β < π now have the coordinates (figure 2) (1) α = 0 (as an arbitrary choice), β = 0;
(2) α = −ϕ2, β = π

2 ; (3) α = π
2 − ϕ2, β = π

2 . Rotating the initial frame about its z-axis
by ϕ2 angle, which corresponds to the transformation of the B2±2 CFPs to their real form,
yields the standard PAS arrangement on the map. Such an arrangement forming a right-
angled isosceles triangle is independent of the x2 ratio and, in consequence, is common for
all H(II)

CF parameterizations (expressed in their symmetry-adapted system) of orthorhombic and
monoclinic (after the rotation by ϕ2) symmetries.
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2

π

2

π
π

α

1ϕ

1ϕ

{

{

β

π

1

0

2

3+ 3-

Figure 3. The position of the three principal axes 2, 3+, 3− on the B ′
20(α, β) map of H(II)

CF with
x2 = 0 (ϕ1 > 0 option) with respect to the initial reference frame. The additional apparent
distinguished point 1 corresponds to the initial z-axis direction.

In the second case, we get
∂B ′

20

∂α
= −

√
6x1 sin β cos β sin(α + ϕ1)B20

∂B ′
20

∂β
= [−3 sin β cos β +

√
6x1(cos2 β − sin2 β) cos(α + ϕ1)]B20,

and the distinguished points (within the ranges 0 � α < π and 0 � β < π ) are displayed in
figure 3:

(1) α = π

2
− ϕ1, β = 0;

(2) α = π

2
− ϕ1, β = π

2
;

(3) α = −ϕ1, β = ±1

2
arctan

2
√

6

3
x1.

Here, in figure 3, the characteristic feature of the PAS is the horizontal (3+, 3−) base orientation
of the isosceles triangle 2, 3+, 3−, which is symmetrical itself respective to the β = π

2 line.
Finally, in the third case for B ′

20 = 1
2 (3 cos2 β − 1)B20 the derivatives simplify

considerably:
∂B ′

20

∂α
≡ 0,

∂B ′
20

∂β
= −3

2
sin 2βB20,

and now the distinguished points form in figure 4 the straight lines with either β = 0 (maximum
for B20 > 0) or β = π

2 (minimum). Due to the H(II)
CF axial symmetry (C∞,v) respective to

the initial z-axis, the perpendicular distinguished directions do not depend on α angle. The
saddle point cannot occur since for β = 0 and β = π

2 we have B ′
20 = B20 and B ′

20 = − 1
2B20,

respectively. The direct transformational relationship between the considered parameterization
and those with x2 = ±

√
6

2 , x1 = 0 can be revealed since these three parameterizations
correspond to the various axes of the particular PAS (figure 4).

For x2 =
√

6
2 ,

∂B ′
20

∂α
= −6 sin2 β sin(α + ϕ2) cos(α + ϕ2)B20

∂B ′
20

∂β
= −6 sin β cos β sin2(α + ϕ2)B20,
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2

π

2

π
π

α

β

π

1

0

3

2

Figure 4. The distinguished points forming the lines β = 0 and β = π
2 on the map

B ′
20(α, β) = 1

2 (3 cos2 β − 1)B20. All the directions perpendicular to the initial z-axis are
distinguished but equivalent, so no saddle point occurs. The triad 1, 2, 3 determines the
representative PAS.

and, in consequence, the distinguished points are (any α, β = 0) and (α = −ϕ2, any β).

For x2 = −
√

6
2 ,

∂B ′
20

∂α
= 6 sin2 β sin(α + ϕ2) cos(α + ϕ2)B20

∂B ′
20

∂β
= −6 sin β cos β cos2(α + ϕ2)B20,

with the distinguished points given by (any α, β = 0) and (α = π
2 − ϕ2, anyβ). The underlined

second solutions show their independence on the β angle due to the (C∞,v) symmetry of the
H(II)

CF in relation to the x- and y-axes, respectively.

3. Relationships between the CFPs and their ratios for three possible choices of the
z-axis in the PAS

A chosen distinguished direction (one out of the three principal axes), e.g. for i = 1, determines
the definite angles α(1), β(1) of the rotation with respect to the initial reference frame. Hence,

B
(1)
20 =

[
1
2 (3 cos2 β(1) − 1) +

√
6x1 sin β(1) cos β(1) cos(α(1) + ϕ1)

+
√

6
2 x2 sin2 β(1) cos 2(α(1) + ϕ2)

]
B20,

and

B
(1)
22 = ±

{
1
2

[
M2

2 − (
B

(1)
20

)2]}1/2
,

where the signs ± refer either to the first or second kind of orthorhombic symmetry [18]. The
B

(1)
22 CFP can also be calculated immediately based on equation (3) for the applied angles of

rotation α(1), β(1). Then, its real value amounts to
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B
(1)
22 = ±

{[
(
√

6/4) sin2 β(1) − 1
2x1 sin 2β(1) cos(α(1) + ϕ1)

+ x2
(
1 − 1

2 sin2 β(1)
)

cos 2(α(1) + ϕ2)
]2

+ [−x1 sin β(1) sin(α(1) + ϕ1) + x2 cos β(1) sin 2(α(1) + ϕ2)]
2
}1/2

B20.

Substituting the rotation angles (expressions (11)) into equations (1) and (3), the following
relationships hold for the remaining two distinguished directions (i = 2, 3):

B
(2)
20 = − 1

2B
(1)
20 +

√
6

2 B
(1)
22 , B

(2)
22 = ±

(√
6

4 B
(1)
20 + 1

2B
(1)
22

)
and

B
(3)
20 = − 1

2B
(1)
20 −

√
6

2 B
(1)
22 , B

(3)
22 = ±

(√
6

4 B
(1)
20 − 1

2B
(1)
22

)
. (12)

Between the CFPs B
(i)
20 and B

(i)
22 , i = 1, 2, 3, apart from the obvious relations

(
B

(i)
20

)2
+

2
(
B

(i)
22

)2 = M2
2 , other connections are fulfilled as well:

3∑
i=1

B
(i)
20 = 0,

3∑
i=1

[
B

(i)
20

]2 =
3∑

i=1

[
B

(i)
22

]2 = 3

2
M2

2 .

In consequence, the sum of two smaller absolute values among the three
∣∣B(i)

22

∣∣ is equal to

the third largest modulus. The saddle point is characterized by the largest
∣∣B(i)

22

∣∣ value. In
the example discussed above (U4+ ion of the C1 point symmetry in UF4), the CFPs values
B

(1)
22 = 748, B

(2)
22 = 279 and B

(3)
22 = 1026 in cm−1 confirm the previous relationships. They

are also fulfilled by the results of Burdick and Reid [14].
Let us now analyse the relationships between the ratios x

(i)
2 = B

(i)
22

/
B

(i)
20 . According to

equation (12)

x
(2)
2 = ± 1√

6

(
1 − 4

1 − √
6x

(1)
2

)
(13)

x
(3)
2 = ± 1√

6

(
1 − 4

1 +
√

6x
(1)
2

)
.

The values
∣∣B(i)

20

∣∣/M2 that correspond to any triad x
(1)
2 , x

(2)
2 , x

(3)
2 can be found from the plots

1, 2, 3 in figure 5, where the values for an optional triad (2.000, 0.827, 0.131) are marked. The
three

∣∣B(i)
20

∣∣/M2 values for all the three x
(i)
2 from a triad are equal but they belong to different

plots (figure 5). For a chosen triad (2.000, 0.827, 0.131), the maximum corresponds to the
plots 3, 3, 1, respectively. Similarly, the minimum to the plots 2, 1, 3 and the saddle point to
the plots 1, 2, 2.

As seen from the diagram in figure 5, the maximal value of
∣∣B(i)

20

∣∣/M2, i.e. the largest

one within the PAS, max
∣∣B(i)

20

∣∣/M2, i = 1, 2, 3, cannot be less than 0.8660. Within the range

|x2| � 2 its average magnitude amounts to 0.974. This evident proximity of max
∣∣B(i)

20

∣∣/M2

value to 1 suggests the possibility of a rough approximation, i.e. taking in a preliminary fitting
procedure only the purely axial H(II)

CF with all the consequences of that.

There are two particular triads
(
0,±

√
6

2 ,±
√

6
2

)
and

(∞,± 1√
6
,± 1√

6

)
which have either

characteristic intersection points of the plots or display asymptotic convergence to each
other for x2 → ∞ (figure 5). The first triad refers to the purely axial (C∞,v)H(II)

CF (or
an axial one if the axial multiplicity exceeds 2), when for the three ratios of the triad
max

∣∣B(i)
20

∣∣/M2 = 1, and the distinguished directions are successively the z-, x- and y-axes with
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2x

1
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6

1 = 0.4082
2

6 = 1.2247

0.8270.131
2.000

Figure 5. The
|B(i)

20 |
M2

versus x2 plots, where i = 1, 2, 3 runs over the three principal axes. An
optional x2 triad (2.000, 0.827, 0.131) is shown.

all the directions perpendicular to them, respectively (see subsection 2.1). In turn, the second
triad can be, e.g., associated with the H(II)

CF of the rectangle of ligands with the coordinates
θ = ± arccos 1√

3
, φ = 0 (see section 4).

The possibility of grouping of all x2 ratios into their separate triads (equation 13) is the key
feature of the second-order tensors conditioning the PAS and enabling their diagonalization.
In general, the higher order multipoles do not possess this property.

4. Some model orthorhombic coordinations yielding quadrupolar terms H(II)
CF with

various x2 = B22
B20

After the transformation of the H(II)
CF reference frame into its relevant PAS, this Hamiltonian

becomes parameterizable with at most two CFPs
(
B

(i)
20 , B

(i)
22

)
. Therefore, the diagram for

the two-parameter orthorhombic form of H(II)
CF , shown in figure 5, is fully representative

for all orthorhombic, monoclinic and triclinic H(II)
CF s. The question arises how to find this

particular position of the reference frame for which such reduced parameterization becomes
possible, i.e. exactly how to find the PAS (section 2). Below, some model orthorhombic
coordinations are considered as an example. The initial symmetry-adapted reference system
is co-axial with their relevant PASs. The functions

∣∣B(i)
20

∣∣/M2 of x2 presented in figure 5 can

be exemplified by the model orthorhombic H(II)
CF s relevant to four ligands of the coordinates (in

R units) as in figure 6: (1) (sin θ cos φ, sin θ sin φ, cos θ); (2) (−sin θ cos φ, sin θ sin φ, cos θ);
(3) (−sin θ cos φ,−sin θ sin φ, cos θ); (4) (sin θ cos φ,−sin θ sin φ, cos θ). Then, taking into
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x

φ

θ

y
R

1

2
3

4

z

Ligands

Central ion

Figure 6. Model orthorhombic coordination of the central ion by four ligands, specified by the
distance R and polar angular coordinates θ and φ.

account the point symmetry of the central ion surroundings and R−1 dependence of the
individual ligand potential one gets

x2 = B22

B20
= −√

6 sin2 θ cos 2φ

2(1 − 3 cos2 θ)
. (14)

Employing equation (14), the pivotal x2 ratio can be assigned to the appropriate ligand
rectangles (figure 6) specified by their θ and φ angles.

First of all, let us note that for φ = π
4 the ratio x2 equals zero irrespective of the θ angle,

since such coordination corresponds to the tetragonal symmetry for which B22 vanishes except
for q = 0 or q = 4. Besides, B20 CFP vanishes for θ = arccos 1√

3
= 54.74◦ and then in the

limit x2 → ∞. In consequence, if θ = arccos 1√
3

and φ = π
4 both B20 and B22 become zero

as the cubic symmetry conditions are obeyed.
Let us now analyse the case of θ = π

2 and φ = π
4 , i.e. the square in the xy plane for

which x2 = 0 due to its tetragonal symmetry (figure 6). The ratio x2 = −
√

6
2 corresponds to

its two transformations, namely to the appropriate squares in the xz plane (rotating the initial
square by

(
0, π

2

)
angles) and in the yz plane (after the relevant rotation by

(
π
2 , π

2

)
angles).

The positive value x2 =
√

6
2 (equation (14)) refers to the alternative orientation of the initial

square (i.e. φ = 0). Therefore, this triad of the x2 values
(
0,±

√
6

2 ,±
√

6
2

)
corresponds to the

three parameterizations of the H(II)
CF for the square of ligands placed perpendicularly to the

three axes of the PAS, respectively. The magnitudes of |B(i)
20 |/M2 for each x2 from the triad

are identical and equal to 1, 1
2 , 1

2 , but they are assigned to the different plots of the diagram

(figure 5). This is the case of H(II)
CF in the tetragonal symmetry surroundings which for the

quadrupole is effectively axial.
Next, let us examine the case of the coordination rectangle with θ = arccos 1√

3
. As it

results from equation (14) the B20 CFP is equal to zero, regardless of the φ angle (except
for φ = π

4 ) and consequently x2 → ∞. For φ = 0, the considered rectangle reduces
itself to the system of two double ligands in the xz plane (1 + 4 and 2 + 3 in figure 6) of

the coordinates
(±R

√
2
3 , 0, R

√
1
3

)
, which is equivalent to the rectangle composed of four

single ligands of the coordinates
(±R

√
2
3 , 0,±R

√
1
3

)
and the ratio of the sides

√
2. As a

result of both the rotations of the reference frame either by
(
0, π

2

)
or

(
π
2 , π

2

)
angles the same

x2 = 1√
6

is obtained. The alternative orientation of the initial rectangle (i.e. φ = π
2 ) leads
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to x2 = − 1√
6
. Thus, the obtained x2 triads

(∞,± 1√
6
,± 1√

6

)
correspond indeed to the three

equivalent parameterizations of H(II)
CF of the particular coordination rectangles described above.

Incidentally, for each of the three rectangles forming the icosahedron [19, 20] with the
golden ratio of the sides 1

2 (1+
√

5), the relevant x2 triad takes the values (5.186, 0.548, 0.289),
however without any characteristic peculiarity.

5. Conclusions

For anyH(II)
CF parameterization its PAS orientation with respect to the initial reference frame can

be directly found based on equations (9) and (10). The rotational transformation of the initial
parameterization into that referring to the PAS, i.e. its diagonalization, reduces the original,
in general, five-parameter H(II)

CF with x1, x2, ϕ1, ϕ2, B20, to one out of the three two-parameter
H(II)

CF with x
(i)
2 , B

(i)
20 , where i = 1, 2, 3 denotes the axis of the PAS chosen as the z-axis of the

system.
Within the PAS there are three equivalent two-parameter orthorhombic-like H(II)

CF

parameterizations characterized by x
(i)
2 = B

(i)
22

/
B

(i)
20 ratios which are mutually correlated

according to equation (13). Some definite relationships between the pairs of CFPs B
(i)
20 , B

(i)
22

have been given (section 3).
Any choice of parameterization out of these three ones, e.g. that with maximal

∣∣B(i)
20

∣∣ which

is equivalent to that with the minimal value of
∣∣x(i)

2

∣∣, is unambiguous for all the equivalent
parameterizations.

In the case of the global HCF with its 2k-pole components being rigidly coupled to
each other, this unambiguous choice enables the standardization based on its quadrupolar
components. There is no counterpart of the PAS for the higher order multipoles, but in the
case of need a similar standardization could be based on the reference frames yielding, e.g.,
maximal values of B40 or B60 CFPs.

From among the three options of the z-axis within the PAS, for i = 1, 2, 3, always
max

∣∣B(i)
20

∣∣/M2 � 0.8660 (figure 5) and the average value of the ratio within the typical range
|x2| � 2 exceeds 0.95. This fact suggests already a preliminary rough approximation possible
at the beginning of the fitting procedure for H(II)

CF —a parameterization pattern with only one
non-zero second-order CFP, i.e., B20.

The question about the physical grounds for such specific orientation of the PAS with
respect of the crystallographical reference system remains open. It seems to be particularly
intriguing for triclinic surroundings where no directions are preferred at all. In other words,
what is the physical sense of the second-order H(II)

CF diagonalization. Undoubtedly, the
correlation between the principal axes and the distinguished points on the B ′

20(α, β) map,
i.e., its maximum, minimum and saddle point, is a hint approaching the answer.
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